
Leveraging Custom Code Actions in HubSpot Workflows

Within HubSpot workflows, the Custom code action allows you to write and execute JavaScript
or Python (in beta). This feature extends workflow capabilities both within and outside of
HubSpot. For more details on HubSpot's APIs, refer to the latest or legacy developer
documentation. Examples of common custom code actions can be found in HubSpot's
Programmable Automation Use Cases.

Custom code actions use the Node 16.x runtime for JavaScript and Python 3.9 runtime for
Python, with compute managed via serverless functions by HubSpot and AWS Lambda.

For general issues, contact HubSpot support. For code-specific problems, use the HubSpot
Developer's Forum for troubleshooting tips and advice.

Node.js Supported Libraries

For Node.js custom code actions, the following libraries are available and can be loaded using
the require() function:

- `@hubspot/api-client ^10`
- `async ^3.2.0`
- `aws-sdk ^2.744.0`
- `axios ^1.2.0`
- `lodash ^4.17.20`
- `mongoose ^6.8.0`
- `mysql ^2.18.1`
- `redis ^4.5.1`
- `request ^2.88.2`
- `bluebird ^3.7.2`
- `random-number-csprng ^1.0.2`
- `googleapis ^67.0.0`

These libraries enable various functionalities such as API interactions, data manipulation, and
database connectivity.

Python Supported Libraries

For Python custom code actions, you can load the following libraries using an import statement
formatted as `from [libraryname] import [item]`, such as `from redis.client import Redis`:



- `requests 2.28.2`
- `@hubspot/api-client ^8`
- `google-api-python-client 2.74.0`
- `mysql-connector-python 8.0.32`
- `redis 4.4.2`
- `nltk 3.8.1`

Additionally, standard library modules can be imported normally, such as `import os`.

Create Custom Code Options

To incorporate a custom code action into a workflow:

1. In your HubSpot account, go to Automation > Workflows.
2. Select an existing workflow or create a new one.
3. Click the + plus icon to add a workflow action.
4. In the right panel, choose Custom code.

Setting Up Your Custom Code Action

1. In the right panel, configure your action:
○ By default, custom code actions use Node.js 16.x. To use Python (if in the beta),

select Python from the Language dropdown menu.
2. To add a new secret (e.g., a private app access token):

○ Click Add secret. Ensure the app includes the necessary scopes (e.g., contacts,
forms).

○ Enter the Secret name and Secret value in the dialog box and click Save.
○ To manage existing secrets, click Manage secrets.

3. To include properties in your custom code:
○ Click Choose property and select a property. Enter a Property name to use in

your code.
○ To add more properties, click Add property (each must be unique and can be

added only once, up to 50 properties).
○ To delete a property, click the delete icon.

4. Enter your JavaScript or Python in the code field.
5. To define data outputs for later workflow actions:

○ Under Data outputs, select the data type from the dropdown menu and enter a
name for the data output.

○ To add more outputs, click Add output.
6. Click Save to finalize your setup.

Important Considerations for Custom Code Actions



● Function Execution: The def main(event): function is called when the code
snippet action is executed.

● Event Argument: The event argument contains details about the workflow execution.
● Callback Function: In Node.js, use the callback() function within exports.main to

pass data back to the workflow. This function is essential for returning output data and
should be utilized appropriately.

Testing the Custom Code Action

To ensure your custom code runs as expected, test the action before activating the workflow.
Start by selecting a record to test the code with, then execute the code. This test runs only the
custom code, not other workflow actions.

Note: Changes will apply to the selected test record, so use a dedicated test record to avoid
altering live data.

Steps to Test:

In the workflow timeline, click the custom code action.

At the bottom of the right sidebar, click Test action to expand the testing section.

To test your code, choose a record by clicking the [Object] dropdown menu and selecting the
desired record.

If you're using previously formatted property values in the workflow, enter a test value for the
formatted data.

Click Test to execute the code.

In the confirmation dialog, click Test again to confirm testing against the selected record.

After execution, the sidebar will display:

● Status: Indicates whether the custom code action succeeded or failed.
● Data Outputs: Shows the values generated for the defined outputs. Alerts will appear

next to any undefined outputs, which need to be added for use later in the workflow.
● Logs: Provides details about the test, including memory usage and total runtime.
● To update your custom code action, click Create action to expand the action

editor. Continue to update and test your code as needed.

https://developers.hubspot.com/workflows/format-your-data-with-workflows


When you're done testing the action, click Save to save your changes.

Caveats

When using Node.js for custom code actions, keep the following in mind:

● Random Number Generation: Using Math.random can result in identical numbers
across executions due to time-based seeding. Instead, use the
random-number-csprng library for secure, random number generation.

● Variable Re-use: Variables declared outside the exports.main function may be
reused in future executions. To ensure unique logic or information per execution, declare
such variables within exports.main.

For Python custom code actions:

● Variable Re-use: Similar to Node.js, variables declared outside def main may be
reused. If altering a variable, declare it within def main with the global keyword.

 


